首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1515篇
  免费   61篇
  国内免费   28篇
  2023年   14篇
  2022年   17篇
  2021年   19篇
  2020年   29篇
  2019年   21篇
  2018年   18篇
  2017年   22篇
  2016年   9篇
  2015年   31篇
  2014年   68篇
  2013年   92篇
  2012年   75篇
  2011年   145篇
  2010年   71篇
  2009年   58篇
  2008年   70篇
  2007年   71篇
  2006年   69篇
  2005年   46篇
  2004年   46篇
  2003年   34篇
  2002年   47篇
  2001年   20篇
  2000年   26篇
  1999年   24篇
  1998年   19篇
  1997年   20篇
  1996年   20篇
  1995年   20篇
  1994年   25篇
  1993年   18篇
  1992年   23篇
  1991年   25篇
  1990年   20篇
  1989年   22篇
  1988年   12篇
  1987年   17篇
  1986年   20篇
  1985年   26篇
  1984年   32篇
  1983年   23篇
  1982年   22篇
  1981年   29篇
  1980年   17篇
  1979年   8篇
  1978年   8篇
  1977年   12篇
  1976年   5篇
  1975年   6篇
  1973年   5篇
排序方式: 共有1604条查询结果,搜索用时 31 毫秒
91.
The methylotrophic yeast Pichia pastoris is a popular yeast expression system for the production of heterologous proteins in biotechnology. Interestingly, cell organelles which play an important role in this process have so far been insufficiently investigated. For this reason, we started a systematic approach to isolate and characterize organelles from P. pastoris. In this study, we present a procedure to isolate microsomal membranes at high purity. These samples represent endoplasmic reticulum (ER) fractions which were subjected to molecular analysis of lipids and proteins. Organelle lipidomics included a detailed analysis of glycerophospholipids, fatty acids, sterols and sphingolipids. The microsomal proteome analyzed by mass spectrometry identified typical proteins of the ER known from other cell types, especially Saccharomyces cerevisiae, but also a number of unassigned gene products. The lipidome and proteome analysis of P. pastoris microsomes are prerequisite for a better understanding of functions of this organelle and for modifying this compartment for biotechnological applications.  相似文献   
92.
93.
Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active.  相似文献   
94.
Proteolytic activation is a unique feature of the epithelial sodium channel (ENaC). However, the underlying molecular mechanisms and the physiologically relevant proteases remain to be identified. The serine protease trypsin I can activate ENaC in vitro but is unlikely to be the physiologically relevant activating protease in ENaC-expressing tissues in vivo. Herein, we investigated whether human trypsin IV, a form of trypsin that is co-expressed in several extrapancreatic epithelial cells with ENaC, can activate human ENaC. In Xenopus laevis oocytes, we monitored proteolytic activation of ENaC currents and the appearance of γENaC cleavage products at the cell surface. We demonstrated that trypsin IV and trypsin I can stimulate ENaC heterologously expressed in oocytes. ENaC cleavage and activation by trypsin IV but not by trypsin I required a critical cleavage site (Lys-189) in the extracellular domain of the γ-subunit. In contrast, channel activation by trypsin I was prevented by mutating three putative cleavage sites (Lys-168, Lys-170, and Arg-172) in addition to mutating previously described prostasin (RKRK178), plasmin (Lys-189), and neutrophil elastase (Val-182 and Val-193) sites. Moreover, we found that trypsin IV is expressed in human renal epithelial cells and can increase ENaC-mediated sodium transport in cultured human airway epithelial cells. Thus, trypsin IV may regulate ENaC function in epithelial tissues. Our results show, for the first time, that trypsin IV can stimulate ENaC and that trypsin IV and trypsin I activate ENaC by cleavage at distinct sites. The presence of distinct cleavage sites may be important for ENaC regulation by tissue-specific proteases.  相似文献   
95.
Na+/H+ exchangers are essential for regulation of intracellular proton and sodium concentrations in all living organisms. We examined and experimentally verified a kinetic model for Na+/H+ exchangers, where a single binding site is alternatively occupied by Na+ or one or two H+ ions. The proposed transport mechanism inherently down-regulates Na+/H+ exchangers at extreme pH, preventing excessive cytoplasmic acidification or alkalinization. As an experimental test system we present the first electrophysiological investigation of an electroneutral Na+/H+ exchanger, NhaP1 from Methanocaldococcus jannaschii (MjNhaP1), a close homologue of the medically important eukaryotic NHE Na+/H+ exchangers. The kinetic model describes the experimentally observed substrate dependences of MjNhaP1, and the transport mechanism explains alkaline down-regulation of MjNhaP1. Because this model also accounts for acidic down-regulation of the electrogenic NhaA Na+/H+ exchanger from Escherichia coli (EcNhaA, shown in a previous publication) we conclude that it applies generally to all Na+/H+ exchangers, electrogenic as well as electroneutral, and elegantly explains their pH regulation. Furthermore, the electrophysiological analysis allows insight into the electrostatic structure of the translocation complex in electroneutral and electrogenic Na+/H+ exchangers.  相似文献   
96.
Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na+ channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na+ current observed in native tissue. Inhibition was associated with a hyperpolarizing shift in the steady-state inactivation properties of the channels and was unaffected by modification of channel gating induced by anemone toxin (rATX-II). Systematic pharmacological assessment indicated that no recognized CO-sensitive intracellular signaling pathways appeared to mediate CO inhibition of Nav1.5. Inhibition was, however, markedly suppressed by inhibition of NO formation, but NO donors did not mimic or occlude channel inhibition by CO, indicating that NO alone did not account for the actions of CO. Exposure of cells to DTT immediately before CO exposure also dramatically reduced the magnitude of current inhibition. Similarly, l-cysteine and N-ethylmaleimide significantly attenuated the inhibition caused by CO. In the presence of DTT and the NO inhibitor Nω-nitro-l-arginine methyl ester hydrochloride, the ability of CO to inhibit Nav1.5 was almost fully prevented. Our data indicate that inhibition of peak Na+ current (which can lead to Brugada syndrome-like arrhythmias) occurs via a mechanism distinct from induction of the late current, requires NO formation, and is dependent on channel redox state.  相似文献   
97.
The voltage-gated sodium channel (VGSC) is a complex, which is composed of one pore-forming α subunit and at least one β subunit. Up to now, five β subunits are known: β1/β1A, β1B, β2, β3, and β4, encoded by four genes (SCN1BSCN4B). It is critical to have a deep understanding of the interaction between β1 and β3 subunits, two subunits which frequently appear in many diseases concurrently. In this study, we had screened out the new template of β1 subunit for homology modelling, which shares higher similarity to β3. Docking studies of the β1 and β3 homology model were conducted, and likely β1 and β3 binding loci were investigated. The results revealed that β1–β3 is more likely to form a di-polymer than β1–β1 based on molecular interaction analysis, including potential energy analysis, Van der Waals (VDW) energy analysis and electrostatic energy analysis, and in addition, consideration of the hydrogen bonds and hydrophobic contacts that are involved. Based on these analyses, the residues His122 and Lys140 of β1 and Glu 66, Asn 131, Asp 118, Glu 120, Glu133, Asn135, Ser 137 of β3 were predicted to play a functional role.  相似文献   
98.
异常表达的糖蛋白与PD等多种神经退行性疾病有关。糖蛋白组学研究发现,电压门控钠离子通道β4亚基在PD病人脑组织中表达明显增加。为了深入探索β4亚基及其糖链在帕金森发生发展中的作用,采用PD转基因鼠对其表达进行验证,对其潜在的糖基化位点进行定点突变,构建重组表达质粒。结果发现,在新生PD转基因鼠和野生成鼠脑组织中有~38kDa蛋白条带表达,而在新生野生鼠脑组织中不表达;用PNGase F酶处理去除糖链后,~38kDa蛋白条带变成迁移速递更快的较小分子量条带,说明β4亚基是高度糖基化的蛋白,并且其糖基化与生长发育有关。将突变重组质粒转入HEK-293细胞和小鼠神经瘤细胞Neuro2A中表达,结果发现突变型质粒分子量明显低于野生型。为研究β4亚基及其糖链的功能提供了一定的实验数据并打下了基础。  相似文献   
99.
The inhibitory effect of sucrose and sodium chloride on sago starch gelatinisation was investigated by differential scanning calorimetry (DSC). The temperature of gelatinisation of starch in the presence of low levels of water and high levels of sucrose was found to increase in the presence of sucrose, whereas the gelatinisation enthalpy was unaffected. The gelatinisation temperature range was not as broad in the presence of sucrose as without sucrose. Furthermore, the shape of the gelatinisation endotherm was changed by the addition of sucrose. The double endotherm obtained in limited water:starch systems was changed into a single endotherm, similar to the endotherm obtained in excess water:starch systems at a higher temperature. DSC was also used to examine the effects of water and sodium chloride content on the phase transitions of sago starch. Samples were adjusted to starch:water ratios of 2:3 and 3:2 in sodium chloride concentrations of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 M. The gelatinisation temperatures of sago starch increased and then decreased as the sodium chloride concentration increased. Sodium chloride created similar effects on the endotherms in excess water content and on the first endotherm with limited water content. In the presence of sucrose and sodium chloride, gelatinisation shifted to higher temperatures, and enthalpy associated with the endothermic process decreased. The extent of temperature shift and enthalpy change was dependent on the water to starch to solutes ratios.  相似文献   
100.
We have constructed and characterized transgenic Drosophila lines with modified Na+,K+-ATPase activity. Using a temperature dependent promoter from the hsp70 gene to drive expression of wild-type α subunit cDNA, we can conditionally rescue bang-sensitive paralysis and ouabain sensitivity of a Drosophila Na+,K+-ATPase α subunit hypomorphic mutant, 2206. In contrast, a mutant α subunit (αD369N) leads to increased bang-sensitive paralysis and ouabain sensitivity. We can also generate temperature dependent phenotypes in wild-type Drosophila using the same hsp70 controlled α transgenes. Ouabain sensitivity was as expected, however, both bang sensitive paralysis or locomotor phenotypes became more severe regardless of the type of α subunit transgene. Using the Gal4-UAS system we have limited expression of α transgenes to cell types that normally express a particular Drosophila Na+,K+-ATPase β (Nervana) subunit isoform (Nrv1 or 2). The Nrv1-Gal4 driver results in lethality while the Nrv2-Gal4 driver shows reduced viability, locomotor function and uncontrolled wing beating. These transgenic lines will be useful for disrupting function in a broad range of cell types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号